Успешно протестирована система зажигания инерциального управляемого термоядерного синтеза
Реакция синтеза требует сближения двух лёгких ядер на фемтометровые расстояния, на которых проявляют себя ядерные силы. Сближению препятствуют силы кулоновского отталкивания, а значит, ядрам необходимо сообщить кинетическую энергию, достаточную для преодоления кулоновского барьера. Поскольку «высота» последнего возрастает пропорционально произведению зарядов обоих ядер, наиболее перспективными кандидатами считаются самые лёгкие изотопы. В экспериментах NIF будут применяться дейтерий (его ядро содержит один протон и один нейтрон) и тритий (протон и два нейтрона), у которых зарядовое число минимально и равно единице.
Естественным способом синтеза было бы ускорение ядер одного типа и бомбардировка ими мишени, выполненной из второго изотопа. Если, однако, энергию планируется получать в промышленных масштабах, эта схема не сработает, так как сечения атомных столкновений на много порядков превосходят сечения ядерных реакций. Кинетическая энергия ядер будет расходоваться на ионизацию и возбуждение атомов мишени, а вероятность реализации синтеза окажется ничтожно малой. В результате энергия, затраченная на ускорение, превысит энергетический выход полезной реакции.
Для того чтобы исключить влияние процессов ионизации и возбуждения, столкновение проводят в веществе, которое находится в состоянии полностью ионизованной плазмы. Основным критерием «практичности» здесь становится критерий Лоусона, определяющий минимальную частоту реакций синтеза, достаточную для их устойчивого поддержания в среде. Его смысл сводится к тому, что с достижением температуры запуска реакции нужно выдерживать некое соотношение плотности частиц и времени их удержания в объёме, обеспечивающем эту плотность.
Таким образом, синтез можно зажечь при меньшей концентрации частиц за счёт более длительного удержания плазмы, и здесь физикам должны помочь магнитные ловушки — токамаки (тороидальные камеры с магнитными катушками). Сооружение токамака станет основным этапом международного проекта ITER, экспериментального термоядерного реактора, плазму на котором планируют получить в 2019 году.
ИУТС имеет обратный принцип действия: пожертвовав временем удержания плазмы, учёные пытаются увеличить плотность частиц в ней и спланировать опыт так, чтобы значительная часть термоядерного топлива сгорела ещё до его разлёта. Эта схема будет работать, если дейтерий-тритиевую смесь в конденсированном (замороженном) состоянии практически мгновенно нагреть до сверхвысокой температуры.
В ИУТС-реакторе, как предполагается, будут использоваться сферические мишени с оболочкой, поглощающей подаваемую извне энергию. Вложение энергии должно приводить к испарению и быстрому истечению вещества (абляции) с поверхности сферы. Взрывной процесс абляции даст направленную внутрь ударную волну которая сожмёт и нагреет топливо, находящееся в центральной части мишени, до термоядерных параметров, после чего горение начнёт распространяться из центра к периферии.
Схема нагрева и сжатия термоядерной мишени. 1 — топливо, 2 — оболочка, 3 — падающее излучение, 4 — расширяющаяся плазма вещества оболочки, 5 — фронт абляции, 6 — сжимающаяся неиспарившаяся часть оболочки, 7 — сжимающееся и прогреваемое топливо, 8 — термоядерный микровзрыв, 9 — разреженная плазма вещества оболочки. (Иллюстрация из статьи Владимира Бойко, опубликованной в «Соросовском образовательном журнале».)Закачивать энергию в мишень можно разными способами, и проектировщики NIF выбрали один из наиболее очевидных — лазерное воздействие. При этом 192 лазерных пучка будут направлены не на саму сферу с бериллиевой оболочкой и дейтерий-тритиевым наполнителем, а на металлический цилиндр, в котором она находится. Последний должен нагреваться и отдавать полученную энергию в виде рентгеновского излучения, а оно уже будет взаимодействовать с мишенью.
Сейчас сотрудники NIF занимаются тестированием установки. В последних опытах они оценили условия, возникающие при облучении золотых цилиндров диаметром в 3,55 мм и высотой в 6,40 мм. Внутри них находились пластиковые макеты реальных мишеней, заполненные гелием.
Сравнив данные измерений с теоретическими расчётами, исследователи установили, что эффективность преобразования лазерного излучения в рентгеновское доходит до 90%, а радиационная температура цилиндров превышает 300 эВ (3,6 млн ˚C). Сфера сжималась равномерно, с уменьшением диаметра от 2,2 мм до 100 мкм. «Результаты даже превзошли наши ожидания, — говорит руководитель NIF Эдвард Мозес (Edward Moses). — Существовали некоторые опасения, что мы не достигнем нужной температуры, но всё обошлось».
По словам г-на Мозеса, зажигание термоядерного синтеза в NIF может произойти уже в следующем году. «Я думаю, весной или летом 2012-го всё будет готово, — предполагает учёный. — Но утверждать не берусь».
Капсула с термоядерным топливом (фото Lawrence Livermore National Laboratory). Металлический цилиндр, внутрь которого помещают мишень (фото Lawrence Livermore National Laboratory).Полные версии двух отчётов об экспериментах ([1], [2]) опубликованы в журнале Physical Review Letters.
Подготовлено по материалам Physicsworld.Com.
Дата: 2011-03-14